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Hugely-coherent sensors

Testing new physics with >1020 coherent particles

 Evade Standard Quantum Limit with very large particle numbers:
1. suppress quantum fluctuations
2. Increases the signal size — linearly if the interaction is coherent

 Comagnetometers and torsion pendula take advantage of this:
- set the best limits on: modifications to gravity,
5th forces and ultra-low-mass dark matter;

axion frequency macroscopic interactions

HHz mHz Hz kHz MHz GHz THz
astrophysical bounds

ator™— magnetic lumped microwave
mterferometers™  resonance  circuits cavities

Comagnet
ometers
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Torsion Pendulums

Physics reach of scalars

 Fundamental Incomapatibility between GR and Standard Model

* Extremely feeble new scalar particles are widely predicted

* Long-range non-gravitational interactions of Dark Matter V() =-G (1+“ L i e_r/k)
_ 41 L -2

e Ultra-low-mass scalar dark matter direct detection

* Short-distance modifications to gravity:

* Hierarchy Problem

 Dark Energy — 85 um

 Chameleon Fields — non-renormalizable below ~20 pm
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e Best limits on EP
violation of dark matter

e Direct interaction

* | ong-range
Interaction

e Best limits on EP

violation at distances
< 100 km

e Within ~10 of recent

satellite-missions, but
much greater detection
potential
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 Lower noise fibers (what is the limit)?

e Systematics improvements:

torque spectral amplitude (fN-m /~VHz)

* Improve thermal stability and 01 | T ]
modeling — systematic limit for 0.1 :
MICROSCOPE as well frequency (mHz)

* |Improve gravitational stability
and modeling



Torsion Pendulums

Short-range gravity

magnetic swing damper >

17 um dia. torsion fiber

3 calibration spheres —

endulum angle readout beam

300 “spokes” pendulum

»
——a

separator foil
300 “spokes” attractor

foil translation ———
and alignment

.
—

100 1000
pendulum-attractor separation (um)

» [ests gravity at 40 microns
* Goal 25 microns

e Needs:
Reduced vibrations,
perfectly flat surfaces,
lower patch-effect surfaces




Comagnetometry

Basic Principle

 Measure energy difference between spin-up and spin-down nuclel
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* High spin-densities possible O(50%) at | .
atmospheric pressure [SEOP] Clrculrly Polnized

A= 794.7 nm
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* magnetometer read-out Is very low noise

* coherence times of many hours -> days GE180,T,~400 hrs



Comagnetometry

Best sensitivity in energy units

 Magnetic field drifts

10
orders-of-magnitude larger than
signal of interest: compare two 10
Spin-Species —
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a = ag C0§ wcl Doubly-modulated

L: — (aﬂa)wvﬂfyfiw Hax ~ \/ZPDM/I_}) ' 81// COS M, 1.

Magnitude ~ axion velocity in lab frame

William Terrano — ASU, 2020



DM Signal:

Oscillating Torgue on Spin

a = ag Cos wgt

L = (8’ua)q7zrylﬁfy5w H oy ~ \/ZPDMU * Oy, COS M, 1.

16 of 22 decades in.mass
potentially accessible
using nuclear spins

_ Yari U PDM
H.. ~10"2° eV ( )
© (10—10 GeV_1> 10-3 (\/ (0.04 cV)?

William Terrano — ASU, 2020
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Comagnetometry

DM limits
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Rb-Iinteraction free system

SQUID readout (more expensive, more complicated)

[ o Ny . Must control nuclear self-interactions
DAO K (collisional and geometric couplings)
RF-Shieldi{‘ NMR
Magnetic SQUID - | system » Controlled cell geometry
shielding Feedback
Hoding ystem » Decouple self-interaction Hamiltonian
& NMR \ P
coils
\\ - 4 , * Precise quantum state initialization
. |
| vapor
il » Maintain or monitor magnetic field
R\ direction (Earths rotation effect)
S S




Potential for Ultra-light Axion search

Reach [F-
DM .
Astro- . Commercial Gear
. 107 GeV .
physics Density: 1 amagat
Polarization: 50%
Cell size: 3 x 3.285 cm
Current Data 2.1019GeV SQUID noise: 1 fT
SQUID distance: 2.5 cm
Commercial Gear 1.2-102GeV : cictomes —TADC
PAQ RF-shielding NMR
T~ SQUID - || system
shiciding Devar | [ foack
Holding \ System
&gli\l/ISR \
3He :<_§\\\ ____________________________
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ecycle Ly
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Towards GUT scale ;. gen

Astro- Heacr FDM T2 5hrs: Xenon-dimer
ohysics 10°GeV 50% polarization, SQUID to 200 aT
5cm cell)
eyond

He-Ne Goal 7.1010GeV Decay time T2 limited by Xenon-dimers
— Run hotter (T2 x107) or
— Higher pressure (x20) or

1st Gen 1.2-10""GeV  — decoupling procedures

2nd Gen 3.10% GeV SQUID noise limited by pickup-loop
Inductance:

Beyond 101° GeV+ — Custom SQUID coil (x7) &

— Better coupling (x5)

\/ Big hammer:

— 50 cm cell (x30), gradients at nEDM levels,
low magnetic field noise needed




Further Impact of High-Performance Comagnetometer
With pHz or better energy resolution

e Xenon - EDM measurement in the 10722

dependent

€ — Cm range? Systematics

* Along with compact spin-sources: search for Goldstone bosons
(pseudoscalars) beyond stellar cooling limits

* Using Neon (quadrupolar nucleus): Best measurements of Lorentz symmetry
in E&M



Role of DOE and HEP in improving measurements
Technical and Material Advances

e Some technical improvements more suitable to national lab/staff scientist roles
than graduate student or post-doc:
- long time scales and incremental progress
- heed to preserve knowledge
- heed to share technical advances with multiple groups

1. super High-Q silica: helps any mechanical system
2. low noise surfaces:. helps all short-range gravity test
3. low magnetic noise materials: helps room-temperature magnetometer readout
4. Quantum-limited DC SQUID: comagnetometry and low- frequency axion-
phOtOn Vibrations~ 0

n [ ] N
Vibrations~—% @
= 7
S 10°-
& 10 -
5

610(;2Hz SQUID nOise
—




Role of DOE and HEP in improving measurements
Ultra-Stable (underground) National Facility

* High-stability, low noise national facility O(200m deep):
- along the lines of the low background facilities like Sanford
- many experiments are limited by vibrations (ABRACADRABRA type, self-
compensating comagnetometers, tests of gravity)
- thermal systematics are pernicious (10x lower underground — w/o stabilization)
- gravitational gradient noise difficult to handle
- low-frequency magnetic field variations (mHz-microHz)?

Gravity Gradients
Su ppressed 26

Temp changes 10x lower

vibrations 100x better (W/o stablllzatlon')
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